

Three-dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona:

- 1. General description and results at equinox for solar low conditions [Valeille et al. 2009 (a)]
- 2. Solar cycle, seasonal variations, and evolution over history [Valeille et al. 2009 (b)]

Neutral Upper Atmosphere and Ionosphere Modeling (5章の一部) [Bougher et al. 2008]

東北大学 博士課程2年 星野直哉

■Hot Oの散逸過程

- 解離再結合
- ·電荷交換
- ・スパッタリング
- ・イオンピックアップ

 $O_{2}^{+} + e \rightarrow \begin{cases} O(^{3}P) + O(^{3}P) + [6.98eV] \\ O(^{3}P) + O(^{1}D) + [5.02eV] \\ O(^{1}D) + O(^{1}D) + [3.05eV] \\ O(^{1}D) + O(^{1}S) + [0.83eV] \end{cases}$

■酸素コロナ分布・散逸のシミュレーション

•1次元外気圏モデル(e.g., Cipriani et al., 2007)

•3次元外気圏モデル (Chaufray et al., 2007) (熱圏/電離圏部分の情報は1次元モデルと観測の補間から)

- 太陽活動極大期/極小期
 - 各散逸プロセスの寄与度

解離再結合が支配的

Table. Hot Oの散逸率 (s ⁻¹) [Chaufray et al. 2007]				
	太陽活動極小	太陽活動極大		
解離再結合	1×10 ²⁵	4×10 ²⁵		
イオンピックアップ	2×10 ²³	3×10 ²⁴		
電荷交換	4×10 ²²	4×10 ²³		
スパッタリング	2×10 ²³	7×10 ²³		

- 熱圏/電離圏環境の3次元構造の考慮 (Valeille et al. 2010)
 - 3次元熱圏/電離圏モデル[Bougher et al. 2006]を使用
 - 太陽天頂角依存性をpolar cut/equatorial cutで比較

Fig. Hot O散逸率の太陽天頂角依存性[Valeille et al. 2010]

Fig. 先行研究におけるHot O散逸量比較[Bougher et al. 2008]

外気圏モデルの高次元化

2.Model

2.Model

2.Model

[Valeille et al. 2009 (a)]

■計算条件

<u>Hot O分布</u>

Hot O 密度 (@7000 km)
 Minimum: 約12 cm⁻³
 (antisolar pointの南)
 Max: 約 60 cm⁻³
 (subsolar point)
 →昼に膨らんだ構造

昼夜対流による側輸送の 影響 →熱圏風速場の影響

Fig. Hot Oの600, 200, 60 cm-3の等密度面 [Valeille et al. 2009(a)]

<u>O+生成率</u>

総イオン化率(全球) 2.2×10²⁴ s⁻¹ (先行研究1.5×10²⁴ s⁻¹ [Chaufray et al. 2007])

生成されたO⁺がすべて散逸しても、 解離再結合による散逸量 (6.0×10²⁵ s⁻¹)より一桁以上小さい

Fig. 赤道のO⁺生成率(s⁻¹)分布[Valeille et al. 2009(a)]

■結論

- •Hot O密度分布は昼側に膨らんだ構造
- •Hot O分布はexobase付近では、熱圏の温度・組成場に依存 高度が高くなると熱圏起源の昼夜対流の影響が大きくなる
- 解離再結合によるO散逸量:6.0×10²⁵ s⁻¹
 一方、O⁺生成率: 2.2×10²⁴ s⁻¹
 - →解離再結合がHot O散逸に支配的

太陽活動度(11年)/季節変動(2年)
過去の太陽光Flux変動 (3.5 Gyr)

[Valeille et al. 2009 (b)]

■計算条件

<u>1. Solar cycle, 季節変動</u>

EUV Fluxに太陽活動 極大/極小のものを使用 [Tobiska et al. 1991]

■O散逸量の太陽活動度/季節依存性 太陽活動:3-4倍 (@分点) 季節 : 1.6 倍 (太陽活動極小)

Fig. Hot O散逸量の太陽活動度/季節依存性 [Valeille et al. 2009(b)より作成]

<u>O散逸量の将来予測</u>

方法

・Solar Low/Highに伴なう散逸量変化をcosine fit

楕円軌道によるmodulationを考慮

■Hot O, O散逸量空間分布

■結論

現在の火星環境におけるO散逸量変化
 季節変動:約2倍
 太陽活動:約6倍

- ・過去の太陽光FluxによるO散逸量変化:約9倍
- ・現在-過去の大気散逸量変化に対して、太陽活動度/季節 依存性が無視できない

→過去の大気散逸の理解にも太陽活動/季節の考慮が必要

•3.5 Gyr前の散逸量は約5.7x10²⁶s⁻¹
 →水のlossに換算して10 m程度

Appendix

Table 4. Variations in Magnitude and Spatial Distribution for Thermospheric/Ionospheric and Exospheric Parameters due to Seasons, Solar Cycle, and History^a

	Season (~2 yr)	Solar Cycle (~11 yr)	History (~3.5 Gyr)
	Variations in the	Thermosphere	
Temperatures ^b (Δ T)	small (20 K)	moderate (100 K)	important (190 K)
Exobase height (Δz)	moderate (15 km)	moderate (15 km)	important (50 km)
Spatial distribution ^c	important	none	none
O density ^d (n/n0)	moderate (×1.7–1.8)	moderate ($\times 1.8 - 2.0$)	important (×13)
Spatial distribution ^c	important	none	none
Ion peak height (Δz)	moderate (12 km)	none	none
Spatial distribution ^c	important	none	none
Electron density ^e (n/n0)	small $(\times 1.2)$	moderate $(\times 1.5 - 1.6)$	important ($\times 2.4$)
Spatial distribution ^c	important	none	none
	Variations in th	e Exosphere	
O density (n/n_0)	small ($\times \sim 1.2$)	moderate $(\times 3)$	important ($\times 14$)
Spatial distribution ^c	small	none	small
O escape (φ/φ_0)	small $(\times 1.6)$	moderate $(\times 3-4)$	important ($\times 6-9$)
Spatial distribution ^c	small	none	none
O^+ production (χ/χ_0)		moderate $(\times 4-5)$	important (×~160)
Spatial distribution ^c	small	none	none

^aSeasons, comparing aphelion to perihelion; solar cycle, comparing solar low to solar high; history, comparing epoch 1 to 3. ^bResults for neutral temperature could be extended to electron and ion temperature if they are assumed tied *Fox et al.* [1995, also private communication, 2008].

^cSpatial distribution refers to the angular distribution around the planet in the frame associated with the Sun.

^dCO₂ density and O mixing ratio can be inferred from the results for O density.

^eAt the ion peak rather than at the exobase altitude.