第30回火星勉強会 論文紹介 Three-dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars [Najib et al. 2011 JGR]

2013.2.26 名古屋大学STE研 M1小山響平

本論文について

- ・非磁化惑星からの大気散逸を数値的に再現
- •VikingやMars Expressによる観測結果と比較

・まずは研究背景から……

非磁化惑星からの大気散逸メカニズム

- 熱的散逸(ジーンズ流出)
- 非熱的散逸
 - ・光化学反応による散逸
 - ・太陽風誘導による散逸
 - ・イオンのピックアップ
 - ・スパッタリング
 - ・電離圏イオン流出

先行研究: O+とH+の速度差の観測 [Lundin and Dubinin 1992]

先行研究:分子イオンの流出の観測

Mars Express, ASPERA-3のIon Mass Analyzer(IMA) による、イオンの観 測結果

[Carlsson 2006]

30

30

 $0^+, 0^+, C0^+_2$

2004年6月、77回 のイオンビームイ ベントの統計解析 結果

先行研究: 分子イオンの流出の観測 [Carlsson 2006]

02+, C02+と0+の比は

 $R(O_2^+/O^+) \approx 0.9$ $R(CO_2^+/O^+) \approx 0.2$

散逸する*CO*⁺粒子は 4.0×10²⁴s⁻¹ と推定される。

先行研究:シミュレーション比較

先行研究:シミュレーション比較

[Brain et al. 2010]

MaとTeradaのモデルはそれ ぞれ非磁化惑星周辺の磁場 と太陽風構造よく再現してい る。多種のイオンを用いてい るが、異なるイオンの速度差 を再現できない。

Harnettのモデルはイオン種ご との速度差を考慮できるが、 化学反応が入っておらず、電 離圏を解くことはできていない。

Hybrid+コード結合もあるが、 太陽風から電離圏までをシー ムレスに解きたい

多流体シミュレーション

先行研究: [Najib et al. 2011]

- 多種のイオンを用いたMulti-Fluid MHD
 - Multi-Fluid MHD

プラズマ流中の各イオン種ごとに流体を仮定する。
 イオン種ごとの速度差が表せる。
 ion-ion衝突はこの論文では入っておらず、
 イオン同士の運動量の交換は中性との衝突を介している。
 ・イオンは4種 (H⁺,O⁺₂,O⁺,CO⁺₂,)

・化学反応は10種類 光電離、電化交換、解離性再結合含む

方程式

エネルギー方程式

$$\frac{\partial p_s}{\partial t} + \nabla \cdot (p_s \mathbf{u}_s) = -(\gamma - 1)p_s(\nabla \cdot \mathbf{u}_s) + S_{p_s}, \qquad (3)$$

$$S_{p_s} = 2 \sum_{t=neutrals} \frac{m_s}{m_s + m_t} n_s k(T_n - T_s) + 2$$
 速度差
× $\sum_{t=ions} \frac{v_{st}}{m_s + m_t} n_s k(T_t - T_s)$
衝突周波数
+ $\frac{2}{3} \sum_{t=neutrals} \frac{v_{st}}{m_s + m_t} n_s (u_n - u_s)^2 \ll \frac{S_s T_p - L_s T_s}{m_s}$
+ $\frac{1}{3} S_s (u_n - u_s)^2 \frac{n_s N_s S_s T_n - L_s T_s}{n_e N_s}$,

シミュレーション条件

- BATS-R-USコードを使用
- Hall項をコードに含む
- ・座標は3次元極座標
- ・以下の4つの条件について計算

Simulation Cases	Solar Condition	Upstream B Field	Subsolar Position
Case 1	Solar minimum (test case)	symmetric <i>B</i> field (0, 3 nT, 0)	no crustal field
Case 2	Solar minimum	3nT Parker spiral	no crustal field
Case 3	Solar minimum	3nT Parker spiral	99.4° W 25.3° N
Case 4	Solar maximum	3nT Parker spiral	180° W 0° N

Table 2. Simulation Cases Used in This Study

化学反応

使用するイオンは (H⁺, O⁺, O⁺₂, CO⁺₂,)

Reactions	Ionization Frequency and Rate Coefficient	References
$CO_2 + h\nu \rightarrow CO_2^+ + e$	$7.30 \times 10^{-7} s^{-1} (solarmax)$	Schunk and Nagy [2009]
$O + h\nu \rightarrow O^+ + e$	$2.47 \times 10^{-7} s^{-1} (solarmin)$ 2.73 × 10 ⁻⁷ s ⁻¹ (solarmax)	Schunk and Nagy [2009]
${\rm H} + h\nu \rightarrow {\rm H}^+ + e$	$8.89 \times 10^{-8} s^{-1} (solarmin)$ $8.59 \times 10^{-8} s^{-1} (solarmax)$ $5.58 \times 10^{-8} s^{-1} (solarmin)$	Ma et al. [2004]
$CO_2^+ + O \rightarrow O_2^+ + CO$	$1.64 \times 10^{-10} \text{ cm}^{-3} \text{ s}^{-1}$	Schunk and Nagy [2009]
$CO_2^{\mp} + O \rightarrow O^{\mp} + CO_2$	$9.60 \times 10^{-11} \text{ cm}^{-3} \text{ s}^{-1}$	Schunk and Nagy [2009]
$O^+ + CO_2 \rightarrow O_2^+ + CO$	$1.1 \times 10^{-9} (\frac{800}{71})^{(0.59)} cm^{-5} s^{-1}$	Fox and Sung [2001]
$O^{+} + H \rightarrow H^{+} + O$	$6.4 \times 10^{-10} \text{ cm}^{-3} \text{ s}^{-1}$	Schunk and Nagy [2009]
$H^{+} + O \rightarrow O^{+} + H$ $O_{+}^{+} + e \rightarrow O + O$	$5.08 \times 10^{-6} cm^{-5} s^{-1}$ 7.38 × 10 ⁻⁸ (1200) ^(0.56) cm ⁻³ s ⁻¹	Fox and Sung [2001] Schunk and Nagy [2009]
$CO_2^+ + e \rightarrow CO + O$	$3.10 \times 10^{-7} (\frac{300}{7c})^{(0.5)} cm^{-3} s^{-1}$	Schunk and Nagy [2009]

[Najib et al. 2011]

02+の分布

0⁺の数密度分布 左:単独流体のMHD 右:multifluid MHD

02+の分布

O⁺2の数密度分布 左:単独流体のMHD 右:multifluid MHD

02かの分布

O⁺2の数密度分布 左:単独流体のMHD 右:multifluid MHD multifluid MHDには非対称性が見られ、北向きの対流電場、イオンと 中性粒子の速度差の効果だとしている。

X-Z平面の磁場とイオンの平均速度

X-Y平面の磁場とイオンの平均速度

各種イオンの密度分布

各イオンの数密度分布

H⁺の分布 左:太陽風起源 右:惑星起源

太陽風起源のH⁺が非常に多いので、先の結果には 惑星起源H⁺の分布は見えていない

圧力

Viking観測結果との比較

イオンの高度分布の比較

Hall項の有無は、結果に影響しない

Summary

Table 3. Calculated Subsolar MPB and Bow Shock Positions for Solar Minimum and Solar Maximum With and Without Hall^a

Solar Condition	Hall	MPB Location in R_M	Bow Shock Location in R_M
Solar minimum (case 3)	No	1.17	1.56
Solar minimum (case 3)	Yes	1.17	1.58
Solar maximum (case 4)	No	1.26	1.67
Solar maximum (case 4)	Yes	1.27	1.7

Table 4. Calculated Escape Fluxes (in s⁻¹) From the Multifluid Model

	O^+	O_2^+	CO_2^+	Total	
Case 3 Case 4	$\begin{array}{c} 1.6\times10^{23} \\ 7.7\times10^{23} \end{array}$	$\begin{array}{c} 1.4 \times 10^{24} \\ 9.0 \times 10^{23} \end{array}$	$\begin{array}{c} 2.1 \times 10^{23} \\ 1.7 \times 10^{23} \end{array}$	$\begin{array}{c} 1.77 \times 10^{24} \\ 1.84 \times 10^{24} \end{array}$	

Hall項の有無で、結果に明確な変化は見られなかった。 散逸fluxの値は、先行研究と一致する。

火星のbow shock

[Vignes, D., et al. 2000]

火星のbow shock

[Vignes, D., et al. 2000]

	$X_0(R_M)$	ε	$L(R_M)$	$R_{SD} (R_M)$	$R_{TD} (R_M)$	α^{a}	Nь
This study (Direct fit method)	0.64 ± 0.02	1.03 ± 0.01	2.04 ± 0.02	1.64 ± 0.08	2.62 ± 0.09	4°	450
This study (Slavin's method)	0.72	1.02 ± 0.02	1.93 ± 0.01	1.67 ± 0.03	2.56 ± 0.06	4°	450
Slavin et al. (Phobos 2, 1991)	0.55	1.01	2.07	1.58	2.57	3.2°	94
Trotignon et al. (Phobos 2, 1993)	0.50	1.02	2.17	1.57 ± 0.03	2.63	4°	126

Phobos2のときは太陽風が比較的静穏で、太陽方向に1.57 R_M 程度。MGS では太陽風は比較的活発で、1.65 R_M 程度。