論文紹介:

Influence of a density increase on the evolution of the Kelvin– Helmholtz instability and vortices

Amerstorfer et al., Physics of Plasmas, 17, 072901, 2010

担当者 寺田直樹(東北大)

概要

- 磁気流体力学Kelvin-Helmholtz不安定の二次
 元数値シミュレーション
 - 有限厚みを持つ境界層を仮定
 - 下側のプラズマが大きな質量密度を持つ場合を 想定(非磁化惑星のイオノポーズを想定)
- 最大成長モードの波長や非線形段階に達するまでの距離などを評価
- ・プラズマ雲の形成を仮定して、金星における
 イオン流出率を評価

導入

- Kelvin-Helmholtz不安定(K-HI)
 - 地球マグネトポーズ
 - 非磁化惑星イオノポーズ
 - ・惑星に近づくにつれて、プラズマの質量密度は増加、磁場は減少
 - ・このような配位におけるK-HIの研究は少ない
- イオノポーズ付近での波構造の観測
 - PVO [e.g., Brace et al., 1982; Russell et al., 1983]
 - イオノポースにおける電子密度の波構造とプラズマ雲の観測
 - VEX [Pope et al., 2009; Walker et al., 2011]
 - シースにおける磁場の渦構造の観測
 - MEX [Gunell et al., 2008]
 - 電子密度・イオン密度・イオン速度の振動の観測

導入

- ・金星でのプラズマ雲観測
 - K-HIと関係を示唆 [Wolff et al., 1980; Thomas and Winske, 1991; Brace et al., 1982]
 - Brace et al. [1982]は、金星でのプラズマ雲による イオン流出率を1.4x10²⁶ - 7x10²⁶ ions/sと評価
 - -しかしながら、プラズマ雲はサイズ、形状、速度、 分布、イオン組成などに不確定性がある
- K-HIは、非磁化惑星における太陽風相互作
 用の理解に加えて、惑星大気圏・電離圏環境の進化の理解に重要

数値シミュレーション:支配方程式

二次元の保存系MHD方程式

eはトータルエネルギー密度、Πはトータル圧力

初期条件

- •二次元配置(図1)
 - 境界層に沿ってx軸、垂直にy軸
 - 速度のz成分、磁場のx, y成分は無視

図1.aは境界層の半値幅

初期条件

- 初期プロファイル(図2)
 - 圧力は以下の式に従って与える

 ^{dII}
 _{∂y} = 0.
 - 速度、質量密度、磁場は以下の式で与える
 v_x(y) = 0.5v₀[1 + tanh(y)],

 $\rho(y) = 0.5\rho_0[1 + \tanh(y)] + 0.5\rho_1[1 - \tanh(y)],$

 $B_z(y) = 0.5B_0[1 + \tanh(y)],$

添字0はシース側、添字1は電離圏側(電離圏側は静止系)

- K-HIの種擾乱は以下の式で与える

 $v_y(x,y) = \delta v_y \sin\left(\frac{2\pi}{L_x}x\right)e^{-y^2},$ $L_x(tx方向の計算領域の幅)$

初期条件

初期プロファイル(図2)

 $-v_0=1.0, \rho_0=1.0, B_0=1.5, \Pi=3.0, \delta v_y=0.01$

- ρ_1 =10, 50, 100の3通りのシミュレーションを実行

数值手法

- ・スキーム
 - 二次の中心スキームを使用
 - TVD Lax-Friedrichsスキーム(Rusanovスキーム)
 - Woodward limiter
 - ・中間値(U_i^{n+1/2})をHancock予測子を用いて求めている
 - 対称リーマンファンを仮定
 - リーマン問題を回避
- 境界条件
 - x方向に周期境界
 - y方向に固定境界
- 計算領域
 - $-(0, L_x) \times (-20, +20)$

結果:線形成長率

- ・ 鉛直運動エネルギー $E_v=0.5\rho v_v^2$ の時間発展(図3)
- *E_y(t)*の初期の傾きより線形成長率を求める(*E_y以外でも良い*)

結果:線形成長率

- 種擾乱の波数k_x=2π/L_xを変化させて線形成長率を計算
 最大成長波数k_m: ρ₁増加に伴って減少
 - $k_m a \sim 0.52$ for $\rho_1 = 10$, $k_m a \sim 0.35$ for $\rho_1 = 100$
 - 最大成長波率 γ_m : ρ_1 増加に伴って減少

図4. ρ₁=10, 50, 100の場合の成長率。曲線は放物線によるフィッティング

結果:線形成長率

最大成長率γ_mのρ₁に対する依存性(図5)
 - γ_m=c+b ln(p₁), c=0.1208, b=-0.0168でフィッティング

図5. 最大成長率 γ_m の ρ_1 に対する依存性

結果: 飽和と非線形成長

- ・ E_v の線形成長に要した時間 t_{lin} (図6)
- *ρ*₁の増加に伴い、*t*_{lin}も増加
 - $t_{\text{lin}} = 71.1a/v_n \text{ for } \rho_1 = 10, t_{\text{lin}} = 97.6a/v_n \text{ for } \rho_1 = 50, t_{\text{lin}} = 119.4a/v_n$ for $\rho_1 = 100$

結果: 飽和と非線形成長

 線形成長段階では擾乱が成長し、飽和段階では渦が巻 上る。ρ₁の増加に伴い、渦はより非一様になる(図7-9)

結果: 飽和と非線形成長

• 飽和に達し、渦が発達した後は、境界層がより乱れ、規則 正しい構造は見えなくなる(図10)。境界層の幅は10a程度

図10. 乱流段階。*ρ*₁=10, *k_xa*=0.52

議論

- 非線形段階に達するまでの距離
 - x方向の擾乱の平均速度は0.5v_n
 - (?境界層厚みを無視した理論では、重心系で移動)
 - 線形段階の間に移動する距離は D=0.5v_nt_{lin} よって、D₁₀~36a, D₅₀~49a, D₁₀₀~60a
 - この距離はvnに依存しない
 - 金星や火星における見積り:
 - *a*=50kmとすると(?*a*=10~15km)
 *D*₁₀~1800km, *D*₅₀~2450km, *D*₁₀₀~3000km
 - 一方、太陽直下点から明暗境界線までの距離は、 L₀~9500km(金星), L₀~5300km(火星)
 - ・どちらの惑星においても、非線形段階に達しうる

議論

・プラズマ雲放出によるイオン流出率

- PVOによる観測:

・イオン流出率の推測値は1.4×10²⁶~7×10²⁶ ions/s

- シミュレーションからの見積り:

- ρ₁=100, t_{lin}~120a/v_nの場合を考える
- 擾乱の形をsin²で近似 y(x)=L_vsin²(πx/L_v) ここでL_v~10aは渦の大きさ
- ・1つのプラズマ雲に含まれる電離圏イオンの数は、 $N_{cloud} \sim n_1 l_z \int_0^{l_v} y(x) dx \sim 0.5 n_1 L_v^2 l_z$ ここで l_z はz方向の長さ(磁場沿い)

- シミュレーションからの見積り(続き):

- ・1つのプラズマ雲による流出率は、
 - $\Gamma_{\rm cloud} = N_{\rm cloud} / t_{\rm lin}$
- ・ 片半球におけるプラズマ雲の数を大雑把に仮定、 $K^*=2R_{pl}/I_z$
- ・トータル流出率は、 $\Gamma=2K^*\Gamma_{cloud}=4R_{pl}N_{cloud}/(I_zt_{lin})=(5/3)n_1R_{pl}v_na$
- ・流出率は、太陽風速度と電離圏密度に依存
- 金星のパラメータ(R_{pl}=6×10³km, v_n=400km/s, a=50km, n₁=1000cm⁻³)を用いると、 「=2×10²⁶ ions/s
- 観測とシミュレーションの見積りは同オーダー

 先行研究のほとんどが、速度と密度 の初期分布をtanhで定義

> $V_{x}(y) = 0.5V_{0}(1+tanh(y/a))$ $\rho(y) = 0.5\rho_{0}(1+tanh(y/a))$ $+ 0.5\rho_{1}(1-tanh(y/a))$

速度シアーモデルの問題点

- シアー層内で、運動量がピークを 持つ初期条件になってしまう
- ・ 成長率を過剰見積り

$$\begin{split} V_{x}(y) &= 0.5V_{0}(1 + tanh(y/a)) \\ \rho(y) &= 0.5\rho_{0}(1 + tanh(y/a)) \\ &+ 0.5\rho_{1}(1 - tanh(y/a)) \\ \rho V_{x}(y) &= \rho(y) \cdot V_{x}(y) \end{split}$$

金星イオノポーズ観測との比較

• MHD theory predicts that large amplitude K-H waves would not be observed at SZA<~50°

Travel distance (Δ SZA>30°) for K-HI to grow to large amplitude

INBOUND CLOUDS
 OUTBOUND CLOUD ZONE
 OUTBOU

NBOUND UNOBSERVABLE REGION

OUTBOUND UNOBSERVABLE REGION

INBOUND ATTACHER

OUTBOUND ATTACHE

- Other processes?
- Limitation of MHD approximation?

Plasma cloud signatures [Brace et al., 1982]