第39回 火星勉強会

In situ observations of reconnection Hall magnetic fields at Mars: Evidence for ion diffusion region encounters [Halekas et al., 2009, JGR]

1.Introduction
 2.Data Sources
 3.Case Studies
 4.Event Distribution
 5.Implications and Conclusions

阪本 仁 (東北大学)

- ・火星の誘導磁気圏において、電流シート中の磁場の四重極構造(Hall磁場)がMGSにより 26イベント観測された。
- ・磁場の四重極構造は無衝突リコネクション(RX)によるものと考えられ、MGSはイオン拡散領 域を通過したと考えられる。
- イベントの統計解析によれば
 Hall磁場とmain磁場の比の平均は0.51±0.13。
 normal磁場とmain磁場の比の平均(RXレート)は0.16±0.09。
 これらの値は地球における観測とおよそ一致。
- ・IMFが巻きつくだけでも、RXが起こる電流シートが形成されることが示唆された。 (各々のイベントと残留磁場、IMFの向きの変化に一貫した関連は見られなかった。)
- ・一部のイベントでは、Hall電流の一部となる電子の沿磁力線方向の運動が観測された。
- ・衛星がX-lineより太陽側を通過した時、電流シート中で、電子フラックスの極小が見られた。 (これは、磁力線が閉じていて、火星の熱圏とつながっていることに起因。)
- ・衛星がX-lineより反太陽側を通過した時、電子フラックスの極小は見られなかった。 (これは、磁力線が開いていて、太陽風とつながっていることに起因。)

1.Introduction

<u>〇先行研究から</u>

- ・IMFと残留磁場のRXを観測 [Brain et al., 2007] [Krymskii et al.,2002]
- ・残留磁場下流にある尾部領域内の電流シートでRXを観測 [Eastwood et al.,2008]

- ·大気散逸
- ・降り込み電子の加速 [Halekas et al., 2008] [Ulisen et al., 2008]

<u> 〇本論文では</u>

 Eastwood et al. [2008]は、1イベントについて磁場に重きをおいて研究がなされた。
 本論文では、磁場に加え、電子フラックス、ピッチ角分布も調査し、Case studyと統計 解析を行う。

a. IMFの巻きつき ・ 尾部や磁極付近に反転構造

b. IMFと残留磁場 ・IMFが残留磁場の向きが逆

c. IMFの向きの変化(電離圏) ・電離圏の近くで太陽風の磁場の 不連続面が圧縮 d. IMFの巻きつき (残留磁場の影響あり)
 ・残留磁場がIMFのひっかかりを抑制

e. 残留磁場の引き伸ばし ・太陽風による引き伸ばし

f. IMFの向きの変化(残留磁場)
 ・残留磁場の近くで太陽風の磁場の
 不連続面が圧縮

〇無衝突磁気リコネクション

- イオン拡散領域~c/ω_{pi}
 電子拡散領域~c/ω_{pe}

- ・・・磁力線が繋ぎ変わる点
- セパラトリクス

・・・上流と下流の磁力線トポロジー境界

・無衝突磁気RXでは、Hall電流を形成して、 電流シート内に磁場の四重極構造(Hall磁場)が生じる。

※RXについては、以下のwebページが参考になる。 http://www.astro.phys.s.chiba-u.ac.jp/pcans/em2d_mrx.html

2.Data Sources

〇観測機器

Magnetometer (MAG)
 (精度:~0.5nT in shadow ~1.0nT elsewhere)

・Electron Reflectometer (ER) (レンジ:10eV-20keV, 視野:360°×14°)

- ・磁場・電子エネルギーフラックス・電子ピッチ角分布
- Local time : ~2am/2pm

•高度:~400km

※ERの視野の関係で、電子ピッチ角分布のレンジは、一定ではない

3.Case Studies

3.1 Expected Magnetic Field Signatures

Fig.2

Fig.3

MSO座標

<u>Minimum variance座標</u>

i:分散が最大である磁場成分の方向 ⇒ main field j:分散が中間である磁場成分の方向 ⇒ Hall field

k:分散が最小である磁場成分の方向 ⇒ normal field

7

3.2 Case Study 1: On 21 November 2003

磁場の四重極構造、電子のピッチ角分布ともに無衝突RXで説明がつくケース

イベントの基本情報

- local time: 2am
- •太陽天長角: 138°
- •地理緯度•傾度: 268° E 57° N
- (※残留磁場が強い領域から遠い)
- ・IMF clock angleの変化:16°
- (※ IMF clock angleほとんど一定と考えてよい。)

このケースの電流シートはFig.1のaのパターンで形成されたと考えられる。

- ・X方向(i方向)に対称な磁場の反転~20nT、Y方向(j方向)にHall磁場~10nT
- ・Hall磁場の様子は定量的・定性的にも 地球の尾部・マグネットポーズ・シースの 観測と似ている。[Øieroset et al., 2001] [Mozer et al.,2002] [Phan et al.,2007]・・・・
- minimum variance座標での磁場変化からX-lineから太陽側の領域
 を横切ったと考えられる。(Fig.2、Fig.3におけるタイプ3)
- ・電流シート内に電子フラックスの極小点が2か所見える。 (セパラトリクス付近での電子の減少 or **電流シート中の磁力線が惑星・外圏を通っている。**)

・電流シートの厚みTは以下のように見積もることができる。

main fieldの反転構造の時間幅は~70s、衛星の速度は~3.4km/s normal方向と衛星の速度方向、それぞれの方向の単位ベクトルの内積~0.36 ↓ T~70[s]×3.4[km/s]×0.36 = 85km

・電流シート・衛星の交差点とX-lineの距離dは、以下のように見積もれる。

 $d = \frac{T}{2} \div \frac{\langle B_k \rangle}{\langle B_i \rangle} \sim 400 \text{km}$

・尾部でのジャイロ半径、慣性長を見積もることは難しいので MEXの観測結果に基づきシースのジャイロ半径、慣性長を見積もり、T、dと比べる。

ジャイロ半径:~50km (プロトン)~0.5km(電子) 慣性長:~230km(プロトン)~5km(電子) (※尾部ではジャイロ半径はもう少し小さく、慣性長は、もう少し大きい)

Tはイオンの慣性長と同程度(少し小さい)状況であり、激しいリコネクションが 起こりうるような厚みであることがいえる。

イオン拡散領域の長さが慣性長の数倍とすると、dはそれより少し小さく、衛星は、 イオンの拡散領域を通過したと考えられる。

・通過前と通過後で分布は異なる。⇒非対称なリコネクションの可能性(main-fieldは対称だった。)

•<u>通過前</u>

100-1000eVで太陽方向(X-lineから遠ざかる)の運動、 0-100eVで反太陽方向(X-lineに近づく)の運動

⇒これらの描像は地球の尾部の観測[Manapat et al., 2006]と似ており、 Hall電流の一部をとらえたものと考えられる。

•<u>通過後</u>

0-1000eVで太陽方向の運動、180°付近でロスコーン分布 ⇒磁力線が衝突のある熱圏を通っていることを示唆

3.3 Case Study 2: On 30 March 2001

磁場の四重極構造は無衝突RXで説明がつくが、 電子のピッチ角分布は説明できないケース

イベントの基本情報

- local time: 2am
- •太陽天長角: 140°
- •地理緯度•傾度: 358° E 42° N
- (※残留磁場が強い領域からそれなりに遠い)
- ・IMF clock angleの変化:22°

(※ IMF clock angleほとんど一定と考えてよい。)

このケースの電流シートもFig.1のaのパターンで形成されたと考えられる。

- Hall磁場がY方向、Z方向に両方に含まれている。(Case study 1ではY方向のみ)
- ・Main-fieldとHall-fieldが中心付近で、階段化。(bifurcated current sheetを示唆)
- minimum variance座標での磁場変化からX-lineから太陽側の領域
 を横切ったと考えられる。(Fig.2、Fig.3におけるタイプ1)
- ・電流シート内にはっきりとした電子フラックスの極小点が2か所見える。
- ・T~185km、d~900kmと推論される。(二つの値は、Case study 1の2倍)

14

- •<u>通過前</u>
 - 0-100eVで太陽方向(X-lineから遠ざかる)の運動 1000eV-10000eVで反太陽方向(X-lineに近づく)の運動

低エネルギーが反太陽方向、高エネルギーが太陽方向のCase study 1 とは逆、 地球で観測されるようなHall電流の構造とも逆、原因は不明。

- •<u>通過後</u>
 - 0-100eVで太陽方向(X-lineから遠ざかる)の運動
 - 45°付近でロスコーン分布
 - ⇒磁力線が衝突のある熱圏を通っていることを示唆。

4.Event Statistics 4000 3000 E (L) 2000 **4.1Event Selection** SS データ数 1000 E 10000 (観測された電流シート) 0 -4000-2000 0 2000 X_{ss} (km) **Fig.14** 56(四重極構造持ち電流シート) 90 38(ノイズが少ないもの) 60 30 Latitude 28(下記のcriteriaを課して残ったもの) -30-60 26 (RXの四重極と極性が合う電流シート) \diamond \diamond -90

Criteria: 以下を満たすものは除外

- ・normal-fieldが0.5nT以下
- normal-fieldが1nT以下 かつ 変動による不確定性が30%以上

$$\frac{<|B_k|>}{<|B_i|>}$$
が0.3以上

※この基準によって、相対的に激しいRXが残る。

・26イベント中、12イベントが夜側、13イベントがterminator/極領域、1イベントが昼側に分布 (Fig.14)

60

120

180

Longitude

240

4000

300

Fig.15

360

		Longitude and	Subsolar Longitude	Position Relative to X Line by B	115 eV Electron	115 eV Electron	Peak	
Date and Time ^a	SZA	Latitude	and Latitude	(Electron)	Before/After	During	$ \mathbf{B}_{\mathbf{i}} /\langle \mathbf{B}_{\mathbf{i}} \rangle$	$\langle B_k \rangle / \langle B_i \rangle$
2005-06-26/03:50:38	58	321, 25	284, -21	Antisunward (Sunward)	Mixed/Noisy	Isotropic/Noisy	0.60	0.072
2001-11-23/09:47:40	78	12, -77	179, -25	Antisunward (Sunward)	Antisunward FA/ Isotropic	Isotropic	0.47	0.175
2001-11-04/20:19:51	80	3774	19925	Antisunward	Anti-Sun FA/Isotropic	Isotropic	0.69	0.060
2003-11-30/00:08:37	85	56, -75	225, -20	Antisunward	Loss Cone/Isotropic	Isotropic	0.60	0.107
2005-02-04/11:20:42	96	112, 65	243, 10	Antisunward (Sunward)	Isotropic	Isotropic	0.65	0.201
2005-05-31/22:37:08	98	333, -60	116, -16	Antisunward	Isotropic	Isotropic	0.53	0.087
2001-06-21/06:39:55	117	13, -55	157, -1	Antisunward (Antisunward)	Isotropic/ Loss Cone	Isotropic	0.34	0.136
2003-01-06/01:41:19	117	89, -85	266, 22	Antisunward	Isotropic	Isotropic	0.52	0.106
2005-07-09/00:05:57	80	138, 52	106, -23	Sunward (Sunward)	Noisy Isotropic/ Sunward FA	Isotropic	0.46	0.086
2004-11-12/06:56:55	92	267, -62	221, 23	Sunward (Sunward)	Bidirectional/Isotropic	Trapped	0.49	0.335
2001-03-29/06:13:25	103	298, 51	77, 17	Sunward (Sunward)	Loss Cone	Isotropic, Flux Decrease	0.32	0.094
2001-05-20/20:18:43	109	234, 54	10, 6	Sunward (Sunward)	Bidirectional/ Loss Cone	Isotropic, Flux Decrease	0.64	0.132
2001-11-12/02:46:47	113	19, -37	174, -25	Sunward	Loss Cone/ Isotropic	Isotropic/ Flux Increase	0.38	0.136
2003-05-12/00:25:53	116	273, -54	54, -1	Sunward	Sunward FA	Trapped/ Flux Decrease	0.38	0.30
2001-09-25/02:19:23	131	291, 62	70, -22	Antisunward (Antisunward)	Isotropic/Loss Cone	Isotropic	0.29	0.31
2003-07-24/09:32:01	141	129, 25	267, -18	Antisunward (Antisunward)	Noisy Loss Cone/ Isotropic	Mixed/ Flux Increase	0.38	0.196
2004-03-19/09:09:14	154	277, 2	71, 3	Antisunward (Antisunward)	Loss Cone	Isotropic/ Flux Increase	0.43	0.074
2006-03-17/04:58:19	135	149, 25	301, 11	Sunward	Mixed/Loss Cone	Mixed/ Flux Decrease	0.63	0.081
2003-11-21/05:27:20	138	268, 57	60, -21	Sunward (Sunward)	Sunward FA	Isotropic/ Flux Decrease	0.63	0.326
2006-01-02/20:42:48	138	288, 40	84, -4	Sunward	Sunward FA	Isotropic	0.36	0.097
2001-11-03/02:45:07	139	295, -5	86, -25	Sunward (Antisunward)	Isotropic/ Loss Cone	Trapped/ Flux Decrease	0.59	0.264
2001-03-30/02:21:47	140	358, -42	143, 17	Sunward (Antisunward)	Sunward FA/ Loss Cone	Isotropic, Flux Decrease	0.76	0.090
2003-07-20/19:11:49	140	310, 29	87, -18	Sunward	Sunward FA	Isotropic	0.50	0.084
2005-07-08/14:45:45	142	101, 42	241, -23	Sunward	Sunward FA	Isotropic/ Flux Decrease	0.58	0.229
2004-11-03/02:45:13	143	53, -45	196, 24	Sunward (Antisunward)	Isotropic	Mixed	0.61	0.227
2005-10-11/15:04:44	151	289, 41	86, -21	Sunward	Loss Cone/ Sunward FA	Isotropic	0.38	0.140

^aDate and time format is year-month-day/time and time is in UT.

4.2 Basic Event Properties

統計解析によると ・Hall磁場のmain磁場の比の平均値 : peak |B_j| **→地球の観測値[Øieroset et al., 2001] [Mozer et al.,2002] [Phan et al.,2007]と同程度。**

•normal磁場とmain磁場の比(RXレート)の平均値 : $\frac{\langle |B_j| \rangle}{\langle |B_i| \rangle} \sim 0.16 \pm 0.09$ **⇒速いリコネクションを示唆。地球の観測値に比べて少し大きい。** (criteriaによって相対的に激しいRXのみが抜き出されたため。)

4.3 Event Distribution

・Fig.14のベクトルの向きは、current sheet に沿ったX-lineの位置を指し示す。
 ベクトルの向きは、平均的なdraping patternと一致している。
 ⇒RXが起きるような電流シートの形成に特別な太陽風の磁場や、
 特別な磁気圏の形状は必要ではない。

 Fig.15から、残留磁場との関連性は見られない。しかしいくつかのイベントは、 南半球の高緯度側に位置しており、これらのイベントでは残留磁場が関わって いる可能性もある。

4.4 Event Type Examples

・通過後、
 ロスコーン分布

凮

4.5 Electron Characteristics

26イベントのピッチ角分布には以下の傾向がある

[A] 衛星がX-lineより太陽方向を通過する場合

- ・電流シート中で、ピッチ角分布は等方的に分布もしくは、trapped distribution (Fig.5、10、17で見られたようなフラックスの減少を含んでいる。)
- ・通過前、通過後で、ピッチ角分布はロスコーン分布、
 もしくは(かつ)太陽方向の磁場にそった電子の運動が存在。

⇒磁力線が衝突のある外圏につながっていて、プラズマが失われている

- [B] 衛星がX-lineより反太陽方向を通過する場合
- ・電流シート中で、ピッチ角分布は等方的に分布
- ・通過前、通過後で、ピッチ角分布は等方的な分布かつ(もしくは)ロスコーン分布

⇒磁力線が太陽風につながっていて、プラズマが太陽風からアクセスできる。

(ロスコーン分布はやはり、磁力線の外圏とのつながりで説明できる。)

4.6 Current Sheet Properties

・全電流シートと抽出された26イベントの電流シートを比べると、磁場強度に さほど大きな違いはない。

・26イベントにおける電流シートの厚みの中央値 ~67km
 観測された全電流シート(10000例)の厚みの中央値 ~174km

火星において、薄い電流シートの方がRXが起こりやすい。 (理論・モデルで予想される描像と一致)

4.7 External Drivers

・26イベントで、季節の違い、IMFの巻きつく向きの違いに対応するような イベント間の明確な違いは見られなかった。

 ・26イベントにおけるsubsolar付近の|B|の中央値 ~50nT 10000例におけるsubsolar付近の|B|の中央値 ~36nT
 太陽風動圧が大きいときの方が、RXが起こるような電流シートが形成されやすい。
 ・26イベントにおけるIMF clock angleの変化の中央値 ~18° 10000例におけるIMF clock angleの変化の中央値 ~40°
 IMFの不連続面によるRXより、巻きつきで形成される電流シート内のRXの方が起こりやすい。

5.Implications and Conclusions

Conclusions

- ・火星の誘導磁気圏内で、電流シート中に磁場の四重極構造がMGSにより観測された。 (磁場の四重極構造は無衝突RXによるもの、MGSはイオン拡散領域を通過。)
- ・イベントの統計解析によって得られた、Hall磁場とmain磁場の比の平均値と normal磁場とmain磁場の比の平均値(RXレート)は、地球における観測とおよそ一致。
- ・IMFが巻きつくだけでも、RXが起こる電流シートが形成される。 (各々のイベントと残留磁場、IMFの向きの変化に一貫した関連は見られなかった。)

Implications

- ・火星でのRXの観測結果を普遍たらしめるような グローバルシミュレーションとローカルシミュレーションが必要。
- ・火星のイオン拡散領域は地球尾部に比べ、変動がおだやか
 (磁場があまり乱流的でない or 電流シートがゆっくり動いている。)
 ⇒火星がRXの微視的物理を研究をするのに打ってつけの環境かもしれない。
- ・火星でのRXが一般的な現象だとすれば、大気散逸につながる可能性あり。
- ・RXの重要性を調べるには、もっと包括的な観測装置が必要。⇒MAVEN