

2019年12月20日

第60回火星勉強会 論文紹介 **Elord et al. (2018)** Ramstad et al. (2018)

担当:益永圭 (CU Boulder)

Elord et al. (2018), September 2017 solar flare event: Rapid heating of the Martian neutral upper atmosphere from the X-class flare as observed by MAVEN, https://doi.org/10.1029/2018GL077729

Summary

- EUVMが太陽放射強度の増加を観測。
- 測できる観測器を搭載している。
- 層大気が加熱されたことが示された。

● 2017年9月にX-classフレアが発生(Sept. 2017 event)。9月10日にMAVEN/

● MAVENはNGIMSという超高層大気の中性大気成分やイオン成分の数密度を計

 ●フレア前、フレア中、フレア後の数密度高度プロファイルを比較すると、フレ ア中のみ密度や温度が増加していることが確認され、フレアによって火星超高

Sept. 2017 event

- 2017/9/10にフレアが発生。
- MAVEN/EUVMにより通常より~100倍大き い太陽放射を観測。
- MAVEN/NGIMSもこの時期に観測を行なっ ていた。(近火点近傍で4.5h毎に約20分、 $SZA=67^{\circ}$)
- Arの密度分布がフレアに合わせて大きく変 動しており、フレアが超高層大気へ影響を 及ぼしていると考えられる。
- → Arだけでなく、その他のkey speciesも合 わせてフレア前後のデータも見てみよう!

0-7 nm [W/m^2]

Observations

- 密度プロファイルのorbit毎の変動をプ ロット (orbit5718(=フレア期間) ± 4 orbits)
- フレア期間(緑線)のみ密度プロファイ ルが大きく異なる。
 - 数密度の増加
 - 温度(スケールハイト)の増加
 - O/CO2は減少

	5/14
3.72	5715
	5716
	5717
	5718 2
	5719
	5720
	5721
	5722
400	

Linear fit of density profiles

- 高度プロファイルを直線フィッティング (logスケール)。
- ・直線の傾きからスケールハイト、すなわ
 ち温度が求まる。
- フレア時はAr, N₂の温度が高度>200kmで
 ~100K上昇。CO₂は数十Kの上昇。
- OやCOのスケールハイトからはAr以上の 温度上昇が得られるが、これらの粒子は 光化学反応も絡むため、温度の議論はし ていない。大気温度の指標としては、不 活性なArやN2で議論している。

Results

- フレア中に数密度とスケールハイト(温度)が増加
- フレア中の数密度(at 225 km)はフレ
 ア前後と比べて2-4倍ほど大きい。
- フレア中、ArとN2は高度約200kmより
 上の温度が100K以上上昇している。
 CO₂は数十Kの上昇。
- OやCOは、光化学反応も絡んでいるため、温度の議論はしていない。

Table 1

Changes in Scale Heights and Temperatures of Key Species for the Preflare, Flare and Postflare Data

Spec	ies	Altitude range (km)	Density at 180 km (cm ⁻³)	Density at 225 km (cm ⁻³)	Scale height (lower, upper) km	Ten (low
CO2	Preflare	156–240 155–170	1.013e8 1.570e8	1.005e6 4.465e6	10.1968 Lower 10.4984	179 Low
	Flare	170-182			Middle: 10.5796	Mid
	Thate	182-198			Upper: 12.2129	Upp
		198-253			Top: 12.6252	Тор
	Postflar	9 155-246	1.065e8	1.234e6	10.2678	180
Ar	Preflare	155-231	3.74e6	1.023e5	11.9841	191
		154-171	5.143e6	3.558e5	Lower: 11.4820	Low
	Flore	171-183			Middle: 11.6313	Mid
	Flare	183-196			Upper: 13.8056	Upp
		196-259			Top: 18.3535	Тор
	Postflar	e 155–236	3.759e6	1.254e5	12.5323	200
N ₂	Preflare	155-249	2.955e7	2.421e6	17.0880	191
		155-175	3.375e7	5.823e6	Lower: 17.3343	Low
		175-192			Middle: 19.7742	Mid
	Flare	193-211			Upper: 26.5137	Upp
		211-256			Top: 28.5043	Тор
	Postflar	e 154–257	3.077e7	2.739e6	17.8332	199
со	Preflare	155-252	1.001e7	6.37e5	15.6125	N/A
		155-179	1.222e7	1.666e6	Lower: 14.7902	N/A
	Flare	179-196			Middle: 18.0427	
		197-214			Upper: 23.0809	
		214-257			Top: 26.6994	
	Postflar	9 154-257	1.082e7	7.498e5	16.2752	N/A
0	Preflare	154-253	4.177e7	5.465e6	21.3235	N/A
		153-170	4.614e7	1.299e7	Lower: 20.6190	N/A
	Flaro	170-181			Middle: 21.0454	
		182-194			Upper: 28.6492	
		192-259			Top: 36.7744	
	Postflar	9 154-266	4.945e7	6.766e6	22.1749	N/A

Discussion

タイムスケールについて

NGIMSの観測開始は17:30。NGIMSでは観測できなかったはず。。。

● IUVSとの比較

● 高度170 kmで大気温度が~70 Kの増加

 観測SZAや緯度の違いでNGIMSとは値 が少し異なる??

● 先行研究(@地球)によると、X-classフレアに対する超高層大気の応答は、フレア到 来後1時間以下で静まる(Liu et al., 2011)。今回のX-rayピークは16:12から45分間で

Implications

- 太陽フレアにより火星超高層大気の急速な加熱が観測された。
- 過去の太陽放射は現在より強かったと考えられているため、過去の火星超高層大気はスケールハイトはより大きく、大気散逸にも影響をおよぼしていたと考えられる。

Solar	Time		Enhancement in			
age	before	X-rays	Soft X (20-100 Å)	FUV	UV lines,	UV
(Gyr)	present	(1-20 Å)	EUV (100-360 Å)	(920-	transition	chr
	(Gyr)		XUV (1-1180 Å)	1180 Å)	region	sp
0.1	4.5	1600 ^b	100	25	50	
0.2	4.4	400	50	14	20	
0.7	3.9	40	10	5	7	
1.1	3.5	15	6	3	4	
1.9	2.7	5	3	2	2.4	
2.6	2.0	3	2	1.6	1.8	
3.2	1.4	2	1.5	1.4	1.4	
4.6	0	1	1	1	1	
	Solar age (Gyr) 0.1 0.2 0.7 1.1 1.9 2.6 3.2 4.6	Solar Time age before (Gyr) present (Gyr) (Gyr) 0.1 4.5 0.2 4.4 0.7 3.9 1.1 3.5 1.9 2.7 2.6 2.0 3.2 1.4 4.6 0	Solar Time age before X-rays (Gyr) present (1-20 Å) (Gyr) (Gyr) 1 0.1 4.5 1600 ^b 0.2 4.4 400 0.7 3.9 40 1.1 3.5 15 1.9 2.7 5 2.6 2.0 3 3.2 1.4 2 4.6 0 1	Solar Time Enhancement in age before X-rays Soft X (20-100 Å) (Gyr) present (1-20 Å) EUV (100-360 Å) (Gyr) (Gyr) XUV (1-1180 Å) 0.1 4.5 1600 ^b 100 0.2 4.4 400 50 0.7 3.9 40 10 1.1 3.5 15 6 1.9 2.7 5 3 2.6 2.0 3 2 3.2 1.4 2 1.5 4.6 0 1 1	Solar Time Enhancement in age before X-rays Soft X (20-100 Å) FUV (Gyr) present (1-20 Å) EUV (100-360 Å) (920- (Gyr) (Gyr) 1600 ^b 100 25 0.1 4.5 1600 ^b 100 25 0.2 4.4 400 50 14 0.7 3.9 40 10 5 1.1 3.5 15 6 3 1.9 2.7 5 3 2 2.6 2.0 3 2 1.6 3.2 1.4 2 1.5 1.4 4.6 0 1 1 1	SolarTime beforeX-raysEnhancement in Soft X (20-100 Å)FUV (UV lines, transition (Gyr)(Gyr)present ($(1-20 Å)$ $(1-20 Å)$ EUV (100-360 Å) XUV (1-1180 Å)(920- transition region0.14.51600b10025500.24.44005014200.73.94010571.13.5156341.92.75322.42.62.0321.61.83.21.421.51.41.44.601111

Enhancement factors of solar irradiance in solar history^a

Notes: a normalized to ZAMS age of 4.6 Gyr before present (Table adapted from Güdel, 2007)

(Güdel and Kasting., 2011)

Ramstad et al. (2018), The September 2017 SEP event in context with the current solar cycle: Mars Express ASPERA-3/IMA and MAVEN/SEP observations, https://doi.org/10.1029/2018GL077842

Summary

- 放射線や高エネルギー粒子は観測器を貫いて直接MCP を叩き、バックグラウンドカウントを増大させる。
- SEP到来時に、MEXおよびVEX搭載のIon Mass AnalyzerやElectron Spectrometerのバックグラウンド カウントが増大することが過去に観測されている (e.g., Futaana et al., 2008)
- しかし、どのエネルギー帯の粒子がこれを発生させて いるのかはわかっていない。
- MAVEN/SEPとMEX/IMAの同時観測データを用い、こ の問題の解決を図る。これにより、MAVEN以前のSEP 情報をMEXから得られる。

Futaana et al. (2008)

MEX/IMA BG counts

• バックグラウンドカウント はIMAのM/q<1となるような binから得られる。

(Barabash et al., 2007)

(Carlsson et al., 2006)

MAVEN/SEP FTO event

- F, T, O3つのSidetectorによって検出yes と判定されたイベント。
- イオンと電子の区別はできない。
- 3つのdetectorすべてで検出されているた め、高エネルギーの観測されている。

Incident energy ranges for counted events

	Electrons		lons		Fo
	Foil side keV	Open side keV	Foil side keV	Open side keV	FO
No count	<20	<350	<250	<25	ele io
F	20-700		250-6000		
FT	350-1300		6000- 11,000		
FTO	>600		>11	,000	
от		350-1300		6000- 11,000	
0		350-700		25-6000	

(Larson et al., 2015)

Observation during Sept. 2017 event

2017/9/10にSEPイベントがMAVEN/ SEPにより観測。

MEX IMAのバックグランドカウント
 も同時に増大している。

Dataset

- Question: どのエネルギー帯の粒子がMEX/IMAの バックグラウンドカウントを増大させている の??に答えたい。
- SEP発生時のMAVEN/SEP & MEX/IMAデータ(5) 期間)を用いる。
- 約4000のMEX/IMA backgroundカウント(CIMAbg) とMAVEN/SEP(FTO)のエネルギースペクトルを 取得。

Table 1

List of Events and Corresponding Time Intervals Used to Compare Mars Express ASPERA-3/IMA and MAVEN/SEP Data

No.	Start time	End time
#1	2015-03-25	2015-03-27
#2	2015-05-05	2015-05-07
#3	2015-10-28	2015-11-09
#4	2016-01-06	2016-01-09
#5	2017-09-10	2017-09-23

Note. Dates are formatted as year-month-day.

Method

残差の自乗和が最小になるようなRiをnumericalに決定

$$r = \sqrt{\sum \left(\log(C_{\text{IMAbg}}) - \log\left(\sum_{i} R_{i} \times C_{\text{SEP}}(E_{i})\right) \right)^{2}},$$

$$r = \sqrt{\sum \left(\log(C_{\text{IMAbg}}) - \log\left(\sum_{i} R_{i} \times C_{\text{SEP}}(E_{i})\right) \right)^{2}},$$

$$r = \sqrt{\sum \left(\log(C_{\text{IMAbg}}) - \log\left(\sum_{i} R_{i} \times C_{\text{SEP}}(E_{i})\right) \right)^{2}},$$

$$r = \sqrt{\sum \left(\log(C_{\text{IMAbg}}) - \log\left(\sum_{i} R_{i} \times C_{\text{SEP}}(E_{i})\right) \right)^{2}},$$

$$r = \sqrt{\sum \left(\log(C_{\text{IMAbg}}) - \log\left(\sum_{i} R_{i} \times C_{\text{SEP}}(E_{i})\right) \right)^{2}},$$

$$r = \sqrt{\sum \left(\log(C_{\text{IMAbg}}) - \log\left(\sum_{i} R_{i} \times C_{\text{SEP}}(E_{i})\right) \right)^{2}},$$

$$r = \sqrt{\sum \left(\log(C_{\text{IMAbg}}) - \log\left(\sum_{i} R_{i} \times C_{\text{SEP}}(E_{i})\right) \right)^{2}},$$

$$r = \sqrt{\sum \left(\log(C_{\text{IMAbg}}) - \log\left(\sum_{i} R_{i} \times C_{\text{SEP}}(E_{i})\right) \right)^{2}},$$

$$r = \sqrt{\sum \left(\log(C_{\text{IMAbg}}) - \log\left(\sum_{i} R_{i} \times C_{\text{SEP}}(E_{i})\right) \right)^{2}},$$

$$r = \sqrt{\sum \left(\log(C_{\text{IMAbg}}) - \log\left(\sum_{i} R_{i} \times C_{\text{SEP}}(E_{i})\right) \right)^{2}},$$

Result

• $C_{IMAbg} = \Sigma R_i C_{SEP}(E_i) O R_i を決定できた。$

- IMAバックグラウンドカウントの多くはMAVEN/ SEP FTO eventのenergy bin 6–12にsensitive。
- 対応する粒子は20MeV以上のプロトンまたは ~1MeV以上の電子。
- なお、各binのエネルギー帯は粒子のシミュレー
 ション(Geant4)から見積もられたもの。

How significant Sept. 2017 event was?

- Sept. 2017 eventのバックグラウンドカウントを2004 年観測開始時から14年間のデータと比較
- MEX観測史上4番目に(ピークカウント値が)大きいイ ベント!
 - 1位:1471カウント on 27 Jan 2012 at 23:52:00
 - 2位:1056カウント on 6 Jun 2011 at 13:55:21
 - 3位:700カウント on 28 Apr 2005 at 02:37:48
 - 4位:606カウント on 12 Sep 2017 at XX:XX:XX

Implications

- ネルギースペクトルを予想することができる。
- る!!

● MEX/IMAのバックグラウンドカウントにsensitiveな粒子のエネルギー帯が求まった。 これにより、MEX/IMAのデータからMAVEN/SEPによって観測されるであろうSEPエ

● MAVEN到着前の過去のMEX/IMAデータでSEPの研究(SEPを用いた研究)ができ