Stone, S. W., Yelle, R. V., Benna, M., Lo, D. Y., Elrod, M. K., & Mahaffy, P. R. (2020).

Hydrogen escape from Mars is driven by seasonal and dust storm transport of water Science 370 (6518), 824-831. https://doi.org/10.1126/science.aba5229

東京大学 M2 森悠貴 2020年12月14日 火星勉強会

Abstract

- H散逸の標準的なモデルでは、下層大気のH₂Oから生成されたH₂が上層大気へ拡散し、解離してH が生成され、散逸する。
- 本研究では、MAVENに搭載されているNGIMSを用いて、H₂の代わりにH₂Oが上層大気に直接輸送 され、H₂Oがイオンによって解離されHを生成するということを示した。
- 上層大気のH₂Oの量は、南半球の夏にピークのある季節変動をしていて、2018年のグローバルダス トストームで急増した。
- 本研究では、H₂Oの輸送が現在のH散逸において支配的で、火星の気候の進化に影響を及ぼしてきたことを推定した。

Introduction

- 火星大気と火星表層のD/H比から、火星初期にあったH₂Oのほとんどが宇宙へ散逸したということ が示されている。
- この散逸を説明する標準的なシナリオは以下の通り。
 - $H_2Oは、高度40~50 km付近のhygropauseより下の下層大気に閉じ込められている(それより高度の高い冷たい層では<math>H_2O$ が凝縮する)。
 - 下層大気の光分解とHOx chemistryでH₂が生成される。
 - H₂はhygropauseを越えて上層大気へ拡散され、解離してHが生成され、宇宙へ散逸する。
- 上記の標準的なモデルでは、安定したH₂の拡散とHの散逸が生じる。
- 観測によって、exosphereのHの量に1桁のすばやい変動があることが示され、Hの散逸が季節変動し、ダストストーム中に増加するということが示された(Chaffin et al., 2014; Bhattacharyya et al., 2015; Clarke et al., 2017)。

Introduction

- ExosphereのHの量のすばやい変動の原因として考えられるのは、H₂Oの中層・上層大気への直接 的な輸送である。
- 近日点付近で太陽放射が高まる and/or 大気中のダストによって加熱が起こる結果として、 hygropauseが温められて高度が上がり、H₂Oが中層・上層大気へ直接輸送され、H₂Oが中層・上層 大気でイオンとの反応によりHに解離して散逸するのではないか、という仮説がある。
- 観測によって、中層大気(~15-90 km)のH₂O量が季節変動をし、ダストストームで鉛直分布が大き く変わることが示されている (Fedorova et al., 2018; Heavens et al., 2018; Vandaele et al., 2019; Aoki et al., 2019)。
- 本研究では、MAVENに搭載されているNGIMSのデータを用いて上記の仮説を検証する。
- 下層大気から上層大気へ輸送されてきたH₂Oから生成される中間体(ex. H₂O+, H₃O+)について調べる。
- ✔ NGIMSの観測(H₂O+, H₃O+)
- ✓ NGIMSの観測データから、上層大気のH₂Oを計算
- ✓ 光化学モデルを用いて、電離圏でのH₂Oの破壊率とHの生成率を計算

- Figure 1A: ダストの光学的深さ
 - the Thermal Emission Spectrometer on Mars Global Surveyor
 - the Thermal Emission Imaging System on Mars Odyssey
 - the Mars Climate Sounder on Mars Reconnaissance Orbiter
- Figure 1B: 昼側の中層大気の50Paでの温度
 - the Mars Climate Sounder on Mars Reconnaissance Orbiter

これらの値で、ダストイベントの発生や進化、緯度方 向の分布が分かる。

 Dust storm: MY 32, 33→Regional MY 34→Global

- Blue crosses: MAVENの近火点(高度~150 km)
- 近火点(高度~150 km)での大気を直接観測する。
- Regional dust stormの観測(14 Mar ~ 04 Apr 2015)
 - MAVENの近火点:18°N→8°N
 - dust storm発生時、MAVENの近火点は13°N
 - Ls=313°付近で南半球で発生。
- Global dust stormの観測(26 May ~ 26 Jun 2018)
 - MAVENの近火点:21°S→17°S
 - dust storm発生時、MAVENの近火点が18°S
 - Ls=189°付近で発生。

5

Figure 2A-C

- NGIMSで観測された H_2O^+ と H_3O^+ の量 (電子の量で規格化)
 - 高度: 150 km
 - 1パス平均
- Figure 2A
- 2桁にわたる日変化(赤:昼側、青:夜側)
- Ls=270°で最大、Ls=40°で最小となる季節 変動。
- 昼側電離圏で1桁以上の変動。

- 中層大気のH₂O (Fedorova et al., 2018; Heavens et al., 2018)
 - ExosphereのHとD (Bhattacharyya et al., 2015; Clarke et al., 2017; Mayyasi et al., 2019)
- H散逸率 •

(Halekas, 2017; Bhattacharyya et al., 2017; Chaffin et al., 2018)

- の観測結果と一致。
- MY 32 Ls=315°, MY 34 Ls=190°のダスト ストームと同時に大きく急増(→Fig. 2B,C)。

Global dust storm (Fig. 2C)

- 8 Jun '18~10 Jun '18の二日間で
 - [H₂O+]/[e⁻]: 106→327 ppm (3.1倍)
 - [H₃O+]/[e⁻]: 11→28 ppm (2.5倍)
- MAVEN IUVSによる上層大気のCO₂ (Chaufray et al., 2020)やMAVEN NGIMS による上層大気のCO₂,Ar,O (Elrod et al., 2020)で見られたダストストームによる影 響のタイミングと一致。

Regional dust storm (Fig. 2B)

 季節的なトレンドで減少している間に、ダ ストストームによって上向きの摂動が起 こった。

- [H₂O+]/[e⁻]: 32→73 ppm (2.3倍)
- [H₃O⁺]/[e⁻]: 2.4→3.9 ppm (1.6倍)

Figure 2

Figure 3

NON'1A

0^{ct'14}

10²

1an'15

AU9'16

Oct 16

111.17

6 .16 .11 .11 Dec Feb May 11

"Oct '11

Jan'18

APr'18

jun'18

165 150

Figure 3B, C

上記の方法で計算したH₂O

NGIMSで観測されたH₂

上層大気のH₂O Date

Apr 10, 15, 15, 15, 15, 16, 16 Apr 10, 6ep Dec Mar May Au

上層大気のH₂O

先行研究との比較

MY32 regional dust storm

- Fedorova et al., 2018
 - Mars Expressでの観測
 - H₂O mixing ratioの季節変動(Ls=315°付近で増加)
 - Hygropause高度の上昇、中層大気への水の流入を示唆。
- Heavens et al., 2018
 - MCSでの観測
 - Hygropauseが65-70kmに上昇

MY34 global dust storm

- Vandaele et al., 2019
 - Trace Gas Orbiter (TGO)での観測
 - Ls=196.64°, 80-83°S, 高度50kmでH₂O~100ppm
 - Ls=196.64°, 51-59°N, 高度40km以下でH₂O~250ppm
 - 中層大気への水の流入を示唆。
- Fedorova et al., 2020; Aoki et al., 2019
 - TGOでの観測
 - 5-10ppmのH₂Oが高度90-100kmまで広がっていた。
- Heavens et al., 2019
 - MCSでの観測
 - 高度50kmでH₂O~300ppm

上層大気のH₂

- H₂は主にCO₂+と反応してHを生成し、Hが散逸する。
- Fig. 3B, Cより、上層大気のH₂は季節変動やダストストームによる影響がない。
- H₂は、上層大気のHの変動の原因となるソースではない。

H散逸のソースとなるH₂Oについて

- H散逸におけるH₂Oの影響を調べるために、光化学モデルを考える。
- ・ 電離圏でのH₂Oの破壊率とHの生成率を計算する。
- Vuitton et al., 2019; Lo et al., 2020のモデルを適用。
 - 1次元モデル
 - 34の中性種と33のイオン種について、80~250kmの間で解く。
 - Photolysis, chemical reactions, diffusion of neutralsが含まれている。
- Inputs
 - MAVEN Deep Dip (DD) 2 campaign (MY32 Ls=329°)の観測データの平均値 DD campaign: MAVENが高度~125kmの低い高度を通る。 DD2 campaign: subsolar近くを通り、SZAや緯度があまり変わらない→経度方向の平均値になる
 - Lower boundary
 N₂, Ar, CO, O, H₂O, H, H₂, Heのモル分率を固定 他の種は化学平衡を仮定
 - Upper boundary
 - H, H₂, Oのeffusion velocity=10m/s 他の種は拡散平衡を仮定

H散逸のソースとなるH₂Oについて

Fig. 5C: Low-H₂OモデルでのChemical reaction rates Fig. 5D: High-H₂OモデルでのChemical reaction rates

Fig. 5C, Dの結果を積分して、Table 1の結果を得る。

- Low-H₂O
 - H生成率:5×10⁷cm⁻²s⁻¹ ~
- High-H₂O
 - H₂O破壊率:1.4×10⁹cm⁻²s⁻¹
 - H生成率:2.8×10⁹cm⁻²s⁻¹

先行文献のH散逸率

 $10^7 \sim 5 \times 10^9 \text{cm}^{-2} \text{s}^{-1}$

(e.g., Halekas, 2017)

- H₂Oの破壊によるH生成率(Low-H₂O)の二倍以下
- H₂Oの破壊によるH生成率(High-H₂O)よりかなり低い
 →H₂Oの光分解よりも、電離圏でのH₂Oの破壊の方がH散逸に
 とって重要である可能性がある。

Reaction	Column rate (cm ⁻² s ⁻¹)	
	Low H ₂ O	High H ₂ O
	H ₂ O production	
$H_30^+ + e^- \rightarrow H_20 + H$	0.1 × 10 ⁷	1.99 × 10 ⁸
	H ₂ O destruction	
$\overline{\text{CO}_2}^+ + \text{H}_2\text{O} \rightarrow \text{H}_2\text{O}^+ + \text{CO}_2$	1.6×10^{7}	6.35 × 10 ⁸
$HCO^+ + H_2O \rightarrow H_3O^+ + CO$	0.5×10^{7}	7.56 × 10 ⁸
$\overline{\text{CO}_2^+ + \text{H}_2\text{O}} \rightarrow \text{HCO}_2^+ + \text{OH}$	0.5×10^{7}	2.18 × 10 ⁸
	H production	
Total H production from H ₂ O	5.0 × 10 ⁷	2.85 × 10 ⁹
Total H production from H ₂	1.9×10^{8}	1.9 × 10 ⁸
able 1		1

Implications for climate evolution

- 初期の研究では、H₂Oはhygropauseによって低高度にトラップされると仮定されていた。
- 中層大気の観測で、ダストストームによって中層大気までH₂Oが輸送されることが分かった。
- しかし、Hは光分解のみから生成されると仮定され、モデルでは電離圏でのH₂Oの破壊が無視されていた。
- 本研究では、電離圏にH₂Oが多く存在していることを示し、電離圏でのH₂Oの破壊によってHが生成されることを示した。

H₂Oの電離圏での破壊の時定数:4時間 Electron recombinationによるH生成の時定数:~20s →電離圏に輸送されたH₂OはすぐにHに変わる。

- これまでのモデル:下層でのH2の生成とその遅い拡散にコントロールされていた。
- 本研究:どの程度のH₂Oがhygropauseを超え、中層大気から電離圏へ輸送されるかが重要。
- Krasnoplosky et al., 2019で求められた、H散逸フラックスを表す式 $F = 1.6 \times 10^8 + 1.4 \times 10^{13} f \text{ cm}^{-2} \text{ s}^{-1}$ (1) fは高度80kmでのH₂O mixing ratio

1.6×10⁸cm⁻²s⁻¹はlower boundaryとして仮定されたH₂ mixing ratio 15ppmの分のフラックス 本研究のLow-H₂Oの値(*f*=2ppm)を代入すると、第二項(電離圏でのH₂O破壊の寄与)は2.8×10⁷cm⁻²s⁻¹。 本研究のLow-H₂OでのH生成率(from H₂O)の約半分であり、50%が散逸すると考えられる。 →この結果は高度80kmでのHやH₂の境界条件に左右されるため、正確には分からない。

• NGIMSのデータは125kmまでしかないため、それより低高度については一次元モデルに基づいているが、実際の大気はより複雑で、モデルでは説明しきれていない。

Implications for climate evolution

- 水の上層大気への輸送は火星の気候変動を考える上で重要。
- ダストストームがない年には、高度80kmでのH₂O mixing ratioを2ppmと仮定して、
 - H₂Oから生成されるH: 3.0×10¹⁵cm⁻²
 - H₂から生成されるH:1.1×10¹⁶cm⁻²
- MY34のようにグローバルダストストームがある年には、高度80kmでのH₂O mixing ratioを430ppmと仮定して、
 - H₂Oから生成されるH:45日間で1.1×10¹⁶cm⁻²

→1つのグローバルダストストームで、1MY分のHが生成される。 →過去のダストストームも考慮すると、より多くのHが散逸されたということになる。