MAVEN GRL papers review (H. Nakagawa)

- 1. Neutral density response to solar flares at Mars, Thiemann et al., GRL, 2015.
- 2.A comparison of 3-D model predictions of Mars' oxygen corona with early MAVEN IUVS observations, Lee et al., GRL, 2015.
- 3.Retrieval of CO₂ and N₂ in the Martian thermosphere using dayglow observations by IUVS on MAVEN, Evans et al., GRL, 2015.
- 4. The structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS, Jain et al., GRL, 2015.

Neutral density response to solar flares at Mars

E.M.B.Thiemann, F.G. Eparvier, L.A.Andersson, C.M.Fowler, W.K.Peterson, P.R.Mahaffy, S.L.England, D.E.Larson, D.Y.Lo, N.M.Schneider, J.I.Deighan, W.E.McClintock, B.M.Jakosky, Geophys. Res. Let., 42, doi:10.1002/2015GL066334.

概要

- •14個のModerateフレアを解析し,フレアに対する火星熱圏 中性大気の応答(温度・密度鉛直分布の変化)を初めて明ら かにした.
- ・NGIMSが計測したAr密度スケールハイトから温度を導出.
- ・フレア軟X線極大値付近で急激な加熱/回復を確認.

・火星電離圏フレア応答は電
 子密度の増大のみ確認

(Mendilo+06)

- ・熱圏応答については未解明.
- ・Forbes+06が高度390kmで EUV応答を調べたのみ

目的

Fig. Flare-affected profiles (Mendilo+06)

MAVEN/EUVM,NGIMSにより、地球型惑星で初めてフレア

に対する熱圏応答を観測的に明らかにする.

データ・手法

- EUVM L2(v3r1): 極端紫外線(0-7nm) 軟X線index(1min)
- ・NGIMS L2(v4r1&r3): Ar(4sec); 光化学不活性なAr密度高度分 布(170-300km)
- ・下層(大気波動)による加熱を区別のためIUVSを, 太陽高エネ ルギー粒子による加熱を区別のためSEPを使用

Table 1. Candidate Flares for Heating						
Number	Flare Peak Time (UT)	Peak SXR Index	Delay ^a (h)	Periapsis SZA (deg)	∆7 ^ь (К)	Top-side ΔT^{c} (K)
1	19 Oct 2014 5:08	12.5	0.75	68.5	58.43	62.46
2	20 Oct 2014 16:40	9	1.3	68.4	34.93	41.46
3	22 Oct 2014 2:10	7	No NGIMS	68.5	No NGIMS	No NGIMS
4	16 Nov 2014 17:50	4.9	2.66	82.6	31.7	86.05
5	28 Feb 2014 4:55	2.6	2.08	87.8	5.13	-2.35
6	1 Mar 2015 12:45	11.5	1.5	86.1	-13.98	-6.9
7	6 Mar 2015 6:00	>2.6	1	77.8	12.63	9.2
8	7 Mar 2015 22:35	8.6	1	76.3	11.76	19.4
9	10 Mar 2015 00:00	3.3	1.5	71.1	-14.72	-2.8
10	17 Mar 2015 14:00	>2.4	No NGIMS	59.3	No NGIMS	No NGIMS
11	19 Mar 2015 22:00	3.2	2.5	56.2	-10.4	-23.9
12	24 Mar 2015 8:45	>3.1	0	49.1	64.4	68.8
13	4 May 2015 3:05	3	0.58	22.3	5.7	147.9
14	4 May 2015 12:10	1.16	0.33	22.3	155.3	263.9

^aDifference between periapsis and flare peak times.

^bChange in temperature of postflare orbit from preflare orbit measured from 170 to 270 km.

^cChange in temperature of postflare orbit from preflare orbit measured from 200 to 270 km.

- ・SXR indexが2倍以上UP; 小 SZA(MAVEN近火点が昼間側)
- 本文中では,温度3日平均を2σ 超える加熱があったイベント
 12&14(2015年5月)について 解説
- 高度の200-270km日々変化(6
 軌道移動平均からの変化量)
 は,軟X線との相関がよく
 (0.56),フレア起因の温度変化
 が大きい.

Fig. T/SXR variations and correlation.

17°N, 15:07LT

- MAVEN近火点付近にてSXRピー
 クを観測.
- ・フレア後データは星掩蔽観測の
 ため欠損
- In-Bound中に, 温度が通常の温度
 変化の3倍程度上昇.
- ・250km高度でAr密度66%増大
- ・低高度で増大が弱いのはCO2冷 却の効果?(著者の推測)
- 下層波動による加熱は不明だが
 本論文では無視

Fig. (a-c) SXR index & T variations. (d) 3-days Ar-profiles.

結果#14(2015/05/04)・考察

3°N, 10:46LT

- 4倍に達する急激な温度上
 昇・温度降下.
- Flare-1はSXRピーク値が大 きい(12.5)がFlare-14ほどの 温度上昇は見られなかった; 大SZAのため(モデルと合致)
- Orbit1152でSXRは大きな ピークがないが(cf.1150)Ly-a は最も大きい値を示す; 地 球同様EUV寄与が大きい(26-34nmがよい指標に)

補足(市川他(東北大学学位論文)による数値実験)

Fig. Input solar flux (Ichikawa11)

 ・温度の最大値は247 K(高度202 km)であり、定常状態から42 K(13 km)堆 →極小期・極大期変動(温度80 K、高度27 km)に比べて約50 %の増大率 ・温度が最大値から初期値に戻る時間:9時間

Fig. Temperature variations. (Ichikawa11) → 冷却率変動によって決まる

・組成変動はほとんど起こらず←1-20 nmの波長域は光解離には効いて、

- ・観測でみられた増大(60-70K)は再現していない(40K).
- ・急増は合致するが、冷却スケールが観測より長い:分子熱拡 散の時定数が小さい?

補足(市川他(東北大学学位論文)による数値実験)

Fig. (左)Exobaseにおける太陽フレアによる太陽直下点での温度変動(黒)、加熱率変動(赤)、冷却率変動(青) (右)Exobaseにおける金星(青)と火星(緑)の冷却率変動の比較

Table. 火星(左)と金星(右)のexobaseでの太陽フレアによる温度変動

	火星	金星
温度が最大になる時間	2時間後	1.25時間後
最大値から元の温度に戻るまでの時間	9時間後	3時間後
最大時の温度増大率	20 %(42 K)	31 %(63 K)

金星の温度変動は11%大きい(加熱率変動が大きいため) 温度が収束する時間は5時間早い(分子熱拡散の時定数が小さいため) →exobaseにおいてはCO2-15um赤外放射の影響はほとんどない

17

・低高度でCO2冷却が
 支配的. 高高度では分
 子熱拡散.

