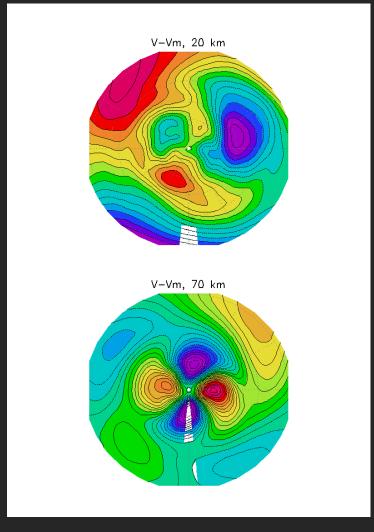
レビュー:

Nonmigrating tides in the Martian atmosphere as observed by MAVEN IUVS

Daniel Y. Lo, Roger V. Yelle, Nicholas M. Schneider, et al.

GRL 42, 9057-9063 doi:10.1002/2015GL066268

黒田剛史(東北大学)


概要

- IUVSによるCO₂⁺ (B²Σ⁺→X²Π) emissionのlimb観測により、 高度100~190kmのCO₂密度について周期的な経度変化を発 見した
- その変化は東西波数1~3の明確な構造が一定のLST(local solar time) frameから見える、すなわちnon-migrating tide
- ・ 波数2構造は赤道では東進1日周期(DE1)、中緯度では半日 周期の定常波(S0)
- 波数3構造は東進1日周期(DE2)&東進半日周期(SE1)
- 波数1構造は西進半日周期(SW1)

熱潮汐波

大規模、周期はHarmonicsによる (1日、半日、1/3日、...)

- 大気の潮汐は、太陽による加熱によって励起される全球規模の慣性重力波である。
- 周期的な太陽加熱が1日、半日、さらにそれよりも短い Harmonicsを生成する。
- 熱潮汐波は上空に伝播し、上層大気の日変化を支配する。

MAOAM simulation for Ls=90. South polar projection

火星の大気潮汐(熱潮汐)

- 太陽放射の1日周期が全球規模でもたらす密度・気圧・温度 の周期的(1日、半日、1/3日…)な変化
- 赤道域から高緯度まで、地表面から高度160kmまで観測されている、シミュレーションによると高度200kmまで存在するよう
- 朝汐はダストの巻き上げや、水蒸気などの大気成分を上層へ と運ぶのに寄与する、よって大気化学に影響を及ぼし、間接 的に散逸率にも影響を与える
- なので潮汐の理解は超重要
- 緯度方向の変化はHough関数で表される

ラプラスの潮汐方程式[廣田, 2000] Hough関数を固有解に持つ

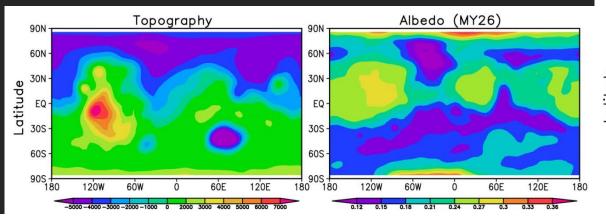
 Φ の緯度構造 $Y(\theta)$ に関する式は

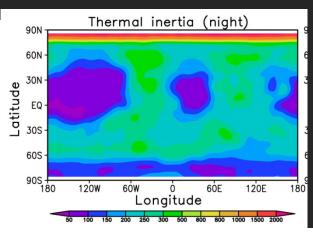
$$\frac{d}{d\mu} \left[\frac{(1-\mu^2)}{(\sigma^2 - \mu^2)} \frac{dY}{d\mu} \right] - \frac{1}{\sigma^2 - \mu^2} \left[-\frac{s}{\sigma} \frac{\sigma^2 + \mu^2}{\sigma^2 - \mu^2} + \frac{s^2}{1-\mu^2} \right] Y + \epsilon Y = 0 \tag{2}$$

ここで $\mu = \sin \theta$ 、s は波数、 σ は振動数を表し、 ε は地球の半径 a と自転角速度 Ω を用いて $\varepsilon = (2\Omega a)/gh$ と書ける。分母の h は等価深度と呼ばれ、大気の場合、海の深さに対応する量である。

火星の大気潮汐(熱潮汐)

• 経度方向の変化は数学的にはこの通り。


$$\sum_{s} \sum_{n} A_{s,n} \cos[(s-n)\lambda + n\Omega t + \delta_{s,n}]$$

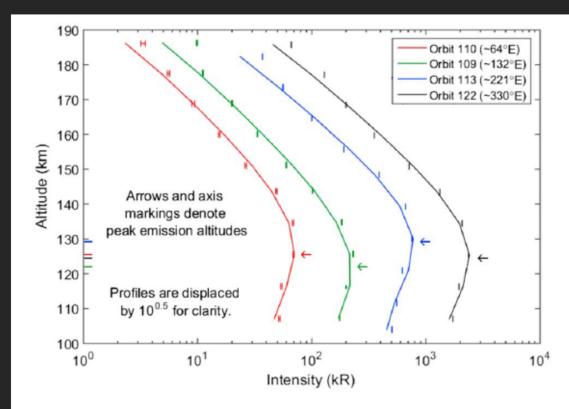

• s=n: migrating tide (太陽と同じ位相速度)

s...東西波数

- n...周期(/日)
- Ω...自転角速度
- λ...経度(東経)
- t...時間
- A…振幅
- δ...位相
- 一方で経度方向の不均質、例えば地形、熱慣性、アルベド、 ダストといった要素が太陽加熱との相互作用で、s≠nのnonmigrating tideを生み出す
- 固定されたLST frameから観測すると、経度方向の波の様相は波数|s-n|の構造に見える $A_{s,n} \cos[|s-n|\lambda+\delta'_{s,n}]$

火星の地形・アルベド・熱慣性

s...東西波数 n...周期(/日)


- (s,n)で表す(s>0:西進、s<0:東進)とともに、周期・方向・波数を示すアルファベットと数字の表記で置き換えられる
- 波数2構造(地形、アルベド、熱慣性など)との相互作用で生じる東進波数1,1日周期(-1,1) (DE1)はViking, MGS-TES, MRO-MCS, MEx-SPICAMで観測されており、振幅は低緯度域で約20%、高緯度に行くほど小さくなる(シミュレーションでも10~40%)
- 波数3構造との相互作用で生じるものは振幅は波数2のものよりも小さい、東進波数2,1日周期(-2,1) (DE2)と東進波数1,半日周期(-1,2) (SE1)
 DE2は赤道域で支配的、高緯度ではSE1が支配的
- ・ 波数1構造の影響は波数2,3のそれよりも小さく、また観測ではその要素の特定が難しい シミュレーションでは定常,1日周期(0,1) (D0)や西進波数1,半日周期(1,2) (SW1)の存在が示されている

CO₂+のUV観測

- CO₂+ (B²∑+→X²Π) electric transition (UV doublet, UVD)の 289nm観測は、CO₂密度の直接観測につながる
- CO₂+ (B²Σ+)はCO₂からphotoionizationとphotoelectron impactにより、またCO₂+ (X²Π)から太陽光子による蛍光 scatteringにより生成されるが、前者による生成の方が圧倒的に多い
- このことは CO_2^+ UVD volume emission ratesは CO_2 の密度と太陽EUVフラックスに依存するが、太陽EUVフラックスは一様のため、これは CO_2 の密度を表すものとみなせる
- これをIUVSで2014/10/18~10/22 (Ls=217°~219°)の間観測、 LSTは1340~1500

解析

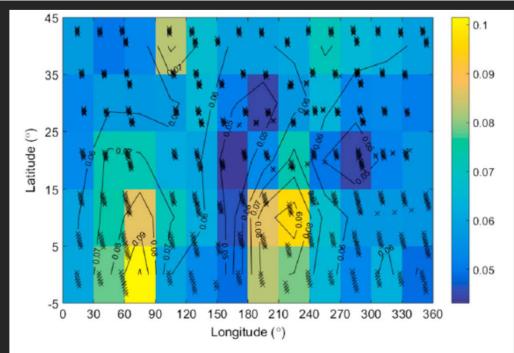

$$I = 2 \int_{b}^{\infty} C \sigma n_0 \exp \left(\frac{z_0 - z}{H} - \frac{\sigma n_0 H}{\mu_0} e^{(z_0 - z)/H} \right) \frac{r dz}{\sqrt{r^2 - b^2}}$$

Figure 1. Chapman layer fits to isolated CO_2^+ UVD profiles at $\sim 10^\circ N$ and different longitudes. All profiles are from scan 10 spatial bin 4 of the respective orbits. Error bars denote 1σ random uncertainties in the measurements. The higher density at 221°E gives rise to a higher altitude of the emission peak (indicated by the arrows).

- volume emission rateはChapman profileでパラメタライ ズされる(左式)
- z₀は130kmに固定、C (proportionality factor), H (スケールハイト), σn₀ (吸収断面積×数密度)はfittingプロセスの中での可変変数とする
- 左図はMultiple Linear Regression (MLR)アルゴリズム で得られた結果を fittingさせたもの

結果

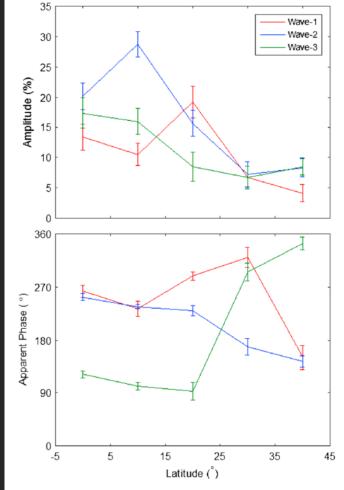

Figure 2. Scaled density at 130 km binned by latitude and longitude, with crosses showing the location of the individual profiles. Observations are made between 1340 and 1500 LST at $L_s = 217^{\circ} - 219^{\circ}$. A value of 0.1 (km⁻¹) corresponds to a density of $\sim 10^{11}$ cm⁻³ assuming $\sigma \sim 10^{-17}$ cm².

Figure 3. Fit to variations of scaled density at 130 km derived from profiles from (left) -5° N to 5° N and from (right) 35°N to 45°N. Error bars denote 1σ fit uncertainties. A value of 0.1 (km⁻¹) in scaled density corresponds to a density of $\sim 10^{11}$ cm⁻³ assuming $\sigma \sim 10^{-17}$ cm².

- 赤道域にはっきりした東西波数2の構造(75°Eと225°E付近にピーク)
- 北緯40度辺りも東 西波数2構造が見え るが、位相は変わり 振幅も減少
- これらはDE1構造 (中緯度はS0構造も あるかも)
- 赤道域の位相分布 はWithers+[2003] の先行観測と一致

結果

Figure 4. Fitted amplitudes A' and apparent phases δ' for wave-1, wave-2, and wave-3 components for scaled densities at 130 km obtained from profiles grouped by latitude band. Error bars denote 1σ fit uncertainties.

Table 1. Fitted Amplitudes A'_k Normalized to Zonal Mean and Apparent Phases δ'_k for Various Latitude Bands for Wave Numbers k = 1, 2, 3

Latitude	A' ₁	δ_1'	A_2'	δ_2'	A' ₃	δ_3'
-5°N to 5°N	13% ± 2%	263°±10°	20% ± 2%	253°±6°	17% ± 3%	121°±6°
5°N to 15°N	11% ± 2%	233°±13°	29% ± 2%	237°±4°	16% ± 2%	101°±6°
15°N to 25°N	$19\% \pm 3\%$	289°±7°	$16\% \pm 2\%$	230°±9°	9% ± 2%	92°±15°
25°N to 35°N	7% ± 2%	320°±17°	7% ± 2%	169°±14°	7% ± 2%	296°±15°
35°N to 45°N	4% ± 1%	150°±21°	8% ± 2%	143°±10°	8% ± 2%	344°±11°
Tides Identified	SW1		DE1, S0		DE2, SE1	

- 東西波数2成分の振幅は北緯10度で最大の29%(DE1)、しかし30度で6%まで落ちるが40度では8%までまた上がる(S0?)
- 東西波数3成分の振幅は赤道(18%)→ 中緯度に向けて減少、おそらくDE2、先 行観測とも一致(SE1だとしたら北緯20 度付近でピークになるはず)
- 位相は先行観測(Wilson[2002], Withers+[2003])とやや差異はあるが、 これは季節が違うからだろう
- 東西波数1の成分は北緯20度にピーク、おそらくSW1

まとめ

- IUVS limb観測で見た CO_2^+ ($B^2\Sigma^+ \rightarrow X^2\Pi$) UVD emissionに対するfitting Chapman profilesから求めた CO_2 の密度分布における、高度100~190kmの東西波数1,2,3の構造を明らかにした
- これらの構造は過去の観測やモデル研究(referencはあまりに 多数あるので割愛、元論文をご参照ください)と一致
- 東西波数2は主にDE1、中緯度ではS0もあるかも;東西波数は 赤道域でDE2、中緯度でSE1(しかし位相からもはっきりしない) ;東西波数1は主にSW1
- 今のところは火星上層大気における潮汐の構造の季節変化が よく分かっていないから、潮汐成分の見極めが難しい
- しかしこれからIUVSでいろんな季節・LSTでの観測を行うこと、 またLSTを固定しない観測からmigrating tideの検出も行うこと により、だんだん火星の熱潮汐のことが分かってくるだろう