Bougher et al., Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability, Science, 350, aad0459, 2015 の紹介

> 寺田直樹(東北大) 火星勉強会拡大版 2015年12月23日

要約

- 2回目のDeep Dip campaign
 - -太陽直下領域で高度~130kmの低高度域まで計測
 - ・均質圏界面(130km付近)の直上。大気が拡散分離し、 太陽極端紫外加熱のピークが位置する、大気散逸の貯 蔵(reservoir)領域
 - 火星熱圏と電離圏の組成・構造・変動を包括的に 計測
- •本計測によって明らかになったこと:
 - 中性大気と電離大気の予想を超えた変動(軌道間 の変動、及び各軌道内の変動)

導入

- ・Reservoir領域の理解の重要性
 - 現在の大気散逸率は、MAVEN計測により制約可能
 - 過去への演繹の信頼性を上げるためには、reservoir 領域における物理・化学過程とその変動(日変化、季 節変化、太陽周期変化など)の理解が必須
- MAVEN's Deep Dip campaigns:
 - 各キャンペーン(1週間程度)で、通常は~150-170km の近火点高度を~120-135 kmに下ろす
 - 軌道上で中性大気、熱的イオンと電子、磁場、超熱 的イオンと電子を計測
 - 近火点位置は移動するので、ミッションを通して幅広 い緯度・地方時をカバーする計画

軌道

- 2回目のDeep Dip campaign(DD2) ٠
 - 2015年4月17-22日
 - 地方時は12-13時、赤道近傍(図1)、Ls~327-330(北半球が冬~春)
- DD2の内、特に2軌道(O1085とO1086, 2015年4月22日)を紹介 •
 - O1085(奇数軌道)は、熱的イオン(NGIMS)とプラズマ場(MAG, SWEA, SWIA, LPW)の計測に焦点
 - O1086(偶数軌道)は、中性大気と温度(NGIMS)の計測に焦点
 - 近火点近傍に中程度の地殻起源磁場
 - 太陽風コンディションは通常

中性大気の組成と温度の計測

- 過去の火星熱圏組成の直接計測は、1970年代のViking Landers 1, 2によるもののみ
- MAVEN / NGIMS [cf. Mahaffy et al., 2014]
 - 主要成分(He, N, O, CO, N₂, O₂, NO, Ar, CO₂等)を~5km鉛直分解能、<25%精度で計測
 - 温度はスケールハイトから導出
 - 垂直変化と水平変化は数値モデルを用いないと切り分けられない
- 鍵となる成分(CO₂, Ar, N₂, O)のinbound時の高度分布(図2)
 - 火星電離圏-熱圏モデル(M-GITM)との比較
 - CO2は高度160-220 kmで良く一致。130 kmでモデルは2倍ほど過小評価
 - Oは MEX / SPICAM の光学観測 [Chaufray et al., 2009] と高度200 kmで5倍ほどの差 (季節、太陽活動度の差?)

5

中性大気の組成と温度の計測

- O/CO₂=1となるのは高度~225 km
 - O/CO₂比は、CO₂の光解離、熱圏循
 環・Oの輸送を反映
 - O/CO₂比は、O₂⁺/CO₂⁺比、hot O散
 逸等を計算する際に重要
 - 観測とモデルは良く一致
- N₂/CO₂比より、"N₂均質圏界面 高度"は~130 km
- M-GITMのN₂/CO₂比による"N₂均 質圏界面高度"は~120 km
 - 渦拡散係数の改良の必要性を示
 唆
 - 注:分子種ごとに分子拡散係数・ 均質圏界面高度は異なる

図3. NGIMS (01086) とM-GITMによる 中性大気密度比の高度分布 ⁶

中性大気の組成と温度の計測

- 温度の高度分布も観測とモデル は良く一致(図4)
 - M-GITMは太陽EUVによる外圏温
 度を良く再現
 - ただし、M-GITMは軌道ごとの変動 (10は19 K: T_{exo}~268±19 K)を捉え られない
- 軌道ごとの変動(図5)
 - 高度200 kmで、O密度は2倍程度、
 CO₂密度は2.7倍程度変動
- 軌道ごとの変動は、下層大気からの重力波の影響かもしれない [Medvedev et al., 2011, 2012]

電離大気と磁場の計測

- 01085におけるイオン密度とプラズマ計測(図7)
 - NGIMS 熱的イオン密度
 - MAG 水平磁場
 - LPW 電子温度
 - SWEA 超熱的電子フラックス
 - SWIA 超熱的イオン密度
 - Multifluid MHDモデルは良く一致。ただし、O*密度とCO₂*低高度ピークは不一致。
 (*M-GITMはイオンは光化学平衡密度のみ計算している)
- 1軌道の内に大きく時空間変動
 - 高度200 kmより上側は輸送支配・下側は光化学
 支配
 - L1, L2で熱的イオン密度変動、局所電流(磁場不連続)、光 電子増加(主にCO₂の電離で生成)、電子温度減少
 - 幅~5-10 kmの薄い境界層
 - 誘導磁気圏磁場と地殻起源磁場の境界を示唆
 - CO,+ピークはO,+ピークより上側に形成
 - 電離圏内で~1 keVプロトンの下向きフラックス
 - 太陽EUVに加えて、超高層の熱源に
 - 太陽風フラックスの推定も可能となる
 - 外圏底下まで~10-20 keVイオン(恐らくo+)の降込み

図7.01085におけるNGIMSイオン密度とプラ ズマ場計測。四角はmultifluid MHDモデル

まとめ

- ・中性大気の密度と温度の計測
 - 熱圏密度と温度は軌道ごとに変動。潮汐や重力 波などによって駆動される。
 - 太陽EUV放射に駆動される火星外圏の平均的な 温度は、M-GITMで再現。しかし太陽EUV放射は、 軌道ごとの変動を説明できない。
- ・電離大気と磁場の計測
 - 電離大気も1軌道の内に大きく時空間変動。
 - 地殻起源磁場は電離圏構造に影響を及ぼし、電 流を運ぶ薄いプラズマ境界層を形成する。